Source code for nussl.separation.primitive.hpss

import numpy as np
import librosa

from .. import MaskSeparationBase


[docs]class HPSS(MaskSeparationBase): """ Implements harmonic/percussive source separation based on [1]. This is a wrapper around the librosa implementation. References: [1] Fitzgerald, Derry. “Harmonic/percussive separation using median filtering.” 13th International Conference on Digital Audio Effects (DAFX10), Graz, Austria, 2010. [2] Driedger, Müller, Disch. “Extending harmonic-percussive separation of audio.” 15th International Society for Music Information Retrieval Conference (ISMIR 2014) Taipei, Taiwan, 2014. Parameters: input_audio_signal (AudioSignal): signal to separate. kernel_size (int or tuple (kernel_harmonic, kernel_percussive)): kernel size(s) for the median filters. mask_type (str, optional): Mask type. Defaults to 'soft'. mask_threshold (float, optional): Masking threshold. Defaults to 0.5. """ def __init__(self, input_audio_signal, kernel_size=31, mask_type='soft', mask_threshold=0.5): super().__init__( input_audio_signal=input_audio_signal, mask_type=mask_type, mask_threshold=mask_threshold ) self.kernel_size = kernel_size def run(self): # separate the mixture background by masking harmonic_masks = [] percussive_masks = [] for ch in range(self.audio_signal.num_channels): # apply mask harmonic_mask, percussive_mask = librosa.decompose.hpss( self.stft[:, :, ch], kernel_size=self.kernel_size, mask=True) harmonic_masks.append(harmonic_mask) percussive_masks.append(percussive_mask) # make a mask and return harmonic_masks = np.stack(harmonic_masks, axis=-1) percussive_masks = np.stack(percussive_masks, axis=-1) _masks = np.stack([harmonic_masks, percussive_masks], axis=-1) self.result_masks = [] for i in range(_masks.shape[-1]): mask_data = _masks[..., i] if self.mask_type == self.MASKS['binary']: mask_data = _masks[..., i] == np.max(_masks, axis=-1) mask = self.mask_type(mask_data) self.result_masks.append(mask) return self.result_masks